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Abstract— This article presents a model of the control of
hand movements learned from human imprecise feedback. The
setup consists of an iCub humanoid robot able to paint with a
pencil on an interactive display. It learns to avoid an abstract
boundary, which is drawn on the table and that the robot can
perceive. Before learning, the robot does not know that it has
to paint only inside the boundary. This is instead learned from
human feedback provided whenever the pencil goes outside
of the shape. We use a neurocomputational model of the
cerebellum, which learns to anticipate the human feedback from
the perception of the previously meaningless shape boundaries.

We show how this biologically-grounded adaptive mecha-
nism, which is plausible in terms of human infant development,
allows the learning of a precise painting behavior, using the
perception of the shape boundaries as a predictive signal of
aversive stimuli. This mechanism can be generalized to any
kind of task where some aversive feedback can be considered
correlated with available sensory cues. Consequently, the model
allows a human teaching to a robot any kind of complex
task, as long as the human knows how to provide consistent
feedback and the robot has available the sufficient sensory cues.
This becomes specially relevant for educating a robot on social
behaviour or bringing it to a socially rich environment.

[. INTRODUCTION

Humanoid robots are of special interest when it comes
to social interaction with non-expert human users [1]. Such
robots need to behave in a transparent and natural way [2].
In general, there is a tendency to design robots that are more
anthropomorphic, as it seems to be the most appropriate
form for social robots [3]. Their anthropomorphic shapes
foster natural interactions, as they provide a more intuitive
interface to establish social expectations [4]. However, how
such natural interactions can be used for social learning, i.e.
for the acquisition of relevant skills by knowledge transfer
from the user to the humanoid robot, is still considered a
difficult problem despite the number of contributions in the
field.

A particular problem is the learning of task constraints
from user feedback. In this case, the user does not provide
specific information about the way of performing a particular
task (this is the domain of learning by demonstration which
is outside the scope of this paper), but only about whether
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the current behavior of the robot is considered as appropriate
or not by the user to actually perform the task. Therefore,
the problem faced by the robot is how to interpret the user
feedback to adapt its own behavior in order to maximize the
amount of rewarding stimuli and/or minimize the amount
of aversive ones. Efficient models of social learning from
feedback have been proposed, using reinforcement learning
[5], [6] or schema-based action selection [7]. However, those
studies focus on learning what action to choose in a discrete
action set.

In this paper, we are rather interested on learning the
timing of action triggering from user feedback and contex-
tual sensory signals. We address the problem by adopting
a biologically-grounded approach based on our previous
work on neurocomputational models of reactive and adaptive
control. We base this work on the classical conditioning
paradigm [8]. Here, animals learn to anticipate aversive stim-
uli when it is presented shortly after consistent contextual
information. This learning process has been precisely tar-
geted inside the cerebellum [9], [10] and some authors of the
present paper have recently proposed a neurocomputational
model of this brain structure [11] to anticipate the aversive
stimuli from the perception of contextual cues. Additionally,
the cerebellum has been related also to motor refinement,
where the aversive stimuli can be compared to an error in
sensory prediction [12].

Neurophysiological models of the cerebellum are becom-
ing popular in robotics, although to our knowledge, they
have not been used in a complete developmental scenario
including human feedback. In [13], a mobile robot learns to
anticipate and avoid collisions. The same cerebellar model
has been applied for anticipating the turning action of a robot
in a rapid navigation task [14] (which addresses general-
ization properties of the cerebellar learning). Examples of
postural and position control tasks are described in [15], in
which spiking models of the cerebellum are used. [16] uses
cerebellar based adaptation to refine the precision of an arm
control task when exploring a surface of uncertain depth. In
our case we enhance the precision of the arm movement with
the goal of painting a predefined area without surpassing the
borders.

In this paper, we address a robot painting training scenario
via cerebellar learning with human tactile feedback. This
setup is inspired from infant-caregiver interaction, where the
adult provides an aversive stimuli (e.g saying “no” or by tac-
tile feedback) when the child paints outside of the shape it is
supposed to color on a paper sheet. From these interactions,
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the child can observe that the caregiver feedback is associated
with the crossing of the shape boundary and learn how to
time the drawing movements according to the perception of
the shape, eventually avoiding the caregiver aversive stimuli.
This paradigm currently applied in a drawing task but can be
easily generalized for a context where social constraints are
imprecisely given through human advise. In contrast to other
work that center on the development of the drawing behavior
[17], [18], we present a general mechanism grounded on
brain theory that uses avoidance behaviors as a basis for
acquiring more complex behavior.

We claim that (1) the described learning process is plausi-
ble to occur in the cerebellum through a classical condition-
ing paradigm and (2) that a neurocomputational model of that
brain structure can be applied in a human-robot interaction
setup to learn task constraints from imprecise user feedback.
To support these hypotheses, we apply an existing model
of the cerebellum [11] to a scenario where an iCub robot
[19] learns the timing of painting movements from human
aversive stimuli through tactile perception.

We thus adopt the view that robotics and neuroscience
have to be in fruitful collaboration [20], and we exactly
place our contributions in this intersection by proposing a
complete system implementing the minimal components of a
developmental scenario in which an iCub robot learns a skill
through human feedback, by acquiring the adaptive motor
responses using a biologically valid model of the cerebellum.

In our task we learn from a reactive controller, exploiting
the anticipation provided by cerebellar learning, producing
an additional adaptive component that refines and makes
the execution of the task more precise. This architecture is
framed in the the Distributed Adaptive Control architecture
(DAC) [21] , which explains that behaviour is organized in a
layered structure building bottom up from a reactive compo-
nent and adding, through learning, an adaptive contribution
(contextual aspects of the task are out of the scope of the
paper).

Our minimal real-world biologically valid implementation
can benefit the field of training by human feedback (as in
[22]) by adding the consideration of temporal constraints and
proposing an alternative to reinforcement learning.

This article is organized as follows: section II provides
details about the neurological substrate behind each part of
the model, while in section III we provide the implemen-
tation and functional details, together with a description of
the experimental setup. Finally, section IV details the results
that are further discussed in section V.

II. BIOLOGICAL BACKGROUND

Our controller is based on an adaptive learned response
that anticipates and modulates the activation of a reactive
behavior. This structure nicely fits the biologically grounded
Distributed Adaptive Control framework (DAC, [21], [23]).
DAC proposes that cognition is organized in a number of
hierarchical layers of increasing complexities: from reactive
(reflex behavior pre-wired from evolution), to adaptive (in-
volving prediction through sensorimotor association learn-

ing), to contextual (involving planning and memory). This
paper focuses on the coupling of the reactive and adaptive
layers.

A. Reactive Layer

The reactive layer is based on the biological concept
of homeostasis, the biological mechanism by which self-
regulation is maintained and allows animals to adapt to ever
changing environment and body conditions. Homeostasis can
be globally understood as the set of needs and drives that
govern an animal’s behavior. In biological terms, the reactive
layer serves the goal of keeping and satisfying a series of
these basic needs through pre-wired and reflexive behaviors.
Each of these needs can be related to an homeostatic regu-
latory loop that the agent has to maintain within a comfort
zone (from now on CZ). Each loop is dedicated to regulate
a certain variable or state of the organism, e.g., hunger,
breathing, safety, rest, etc.

Following the model that we proposed in [24] and that we
implemented within a humanoid robotic setup in [25] each
homeostatic loop has a predefined, pre-wired mechanism
(also called regulator) to maintain its variable within the CZ.
In the reactive layer, these correspond to predefined, auto-
matic actions that can also be considered reflexes. Whenever
the system gets out of the CZ, the homeostatic system can
be regulated to achieve again a desired state.

In our model we define a need or drive as a CZ in some
sensory dimension. The boundaries of this CZ are defined as
thresholds on this sensory dimension. The reactive controller
generates reflexes that react to surpassing the boundaries of
this CZ. Surpassing the threshold triggers an action that,
ideally, brings the measurement back to the CZ. Must be
noted that, in the lowest implementation of the controller,
the reflexes are not precise actions, but overreactions that
ensure that the measure is back to safety. An example of
an homeostatic drive could be the sense of contact on the
skin of a robot, or its force/torque sensors. The reactive
controller receives a signal when these sensors go out of the
CZ and generates a general movement action on the opposite
direction associated to the sensor.

B. Adaptive Layer

The adaptive layer develops on top of the reactive one from
the agent-environment interaction to refine action through
learning mechanisms, allowing e.g. the anticipation of action
to improve the reactive control.

On top of the reactive controller we use a model of
the cerebellum, which acts as an adaptive controller. The
cerebellum has been related to sensory-motor prediction,
anticipation and adaptive motor refinement for a long time
[12].

The most studied paradigm in which cerebellum plays a
crucial role is Classical Conditioning. In Classical Condition-
ing, an aversive Unconditioned Stimulus (US), like an air-
puff delivered to the eye, generates a reflexive Unconditioned
Response (UR) of closing of the eyelid and is preceded by a
neutral Conditioned Stimulus (CS), e.g. a tone. Subsequent
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CS-US presentations will build up a Conditioned Response
(CR), learnt in the cerebellar circuitry, preceding and an-
ticipating the US. The CR will then avoid (completely or
partially) the US [26].

We use the model of the cerebellum presented in [11]
which has been already generalized to a robot navigation,
collision anticipation/avoidance task in [14]. A relevant fea-
ture of this model is the presence of a negative feedback gain
called k,,; (of neurophysiological relevance, see [11] for
details) which balances precisely the reactive and adaptive
components of the CR. This gain controls up to which extent
the CR will completely or partially avoid the US, and, if
partially, up to which degree. Some faint presence of the US
has to remain present, because if not, the model extinguishes
the response.

III. MODEL IMPLEMENTATION

This section describes the experimental setup and neuro-
computational model we use in our experiment, our modeling
choices being directly derived from the biological back-
ground we have exposed in the previous section.

A. Experimental Setup

Our experimental setup consists in a humanoid iCub
robot, a 3D-printed pen, and an interactive table called the
Reactable [27], which is pictured on Figure 1. The iCub
stands in front of the table and uses a pre-existing inverse
kinematics module to control the position of its right hand
on an horizontal plane just above the table. The hand is
able to move on a 15 x 30cm rectangle that we call the
working area. A 3D-printed pencil is attached to the hand
of the robot. This pencil ends with a white tip allowing the
Reactable to detect its (x,y) position in real time. A closed
shape inside the working area is permanently displayed on
the Reactable, e.g. a circle or a triangle, and the robot can
perceive the distance between the pencil tip and the closest
shape boundary. The iCub is also equipped with a tactile skin
allowing to perceive a strong grasp on its arms (the US). We
instruct human subjects to provide feedback to the robot by
grasping its left arm (i.e. the arm without the pen) whenever
it paints outside of the displayed shape.

The neuro-controller we are going to describe outputs
(z,y) coordinates inside the working area that the robot can
reach by moving its whole body as instructed by the inverse-
kinematics module. It consists in two coupled control loops:
a reactive and an adaptive ones.

B. Reactive Controller

The reactive controller provides the robot with two needs.
The first one corresponds to a basic exploratory behavior
which drives the robot to move the pencil in random di-
rections. A direction is defined by a random angle sampled
uniformly in [0, 27] and a random distance sampled from a
normal distribution with mean 0.3 and standard deviation 0.1.
The second need is a reactive behavior which drives the robot
hand to the starting position. This behavior is triggered by an
input h € [0, 1] to the reactive controller, such that the robot’s

iCub robot

border

Fig. 1. Our experimental setup consists in a humanoid iCub robot, a 3D-
printed pen, and an interactive table called the Reactable.

hand moves to the center with a distance proportional to h,
i.e. completely to the center when h = 1 and at equidistance
of the current hand position and the center when h = 0.5. h is
computed as the normalized intensity returned by the robot’s
skin sensor. The go_home behavior is only triggered when
h is above a small threshold €, otherwise the exploratory
behavior operates in isolation.

At the level of this work, homeostasis is presented not
as a basic, primary need, but as a drive to return to the
origin when aversive feedback is provided in the form of
excessive pressure on the robot’s skin. Going out of the
comfort zone produces two outcomes: triggers a go_home
reactive behavior and provides the error signal to the adaptive
controller. The first acts as a reactive measure to return to the
comfort zone. This way, the robot performs random drawing
when the pencil is inside the shape and each time it goes
outside of it, the human subject grasps the robot’s left arm,
which triggers in turn the go_home behavior returning in the
center of the working area.

C. Adaptive Controller

The adaptive controller learns to anticipate the tactile
feedback based on the perception of the distance between
the pencil tip and the closest shape boundary. For this it
simply acts as a linear regressor whose target signal is the
negative stimuli provided by the human. As basis of this
approximation it uses a repertoire of time-varying signals
that code contextual information, the analogue of CS in
classical conditioning, which in this setup is provided by
the distance between the pencil and the closest boundary.
How the adaptive controller is coupled with the reactive one
is shown on Figure 2.

The generation of this context-coding signal comprises
two steps. First 5 bases output a 1 when the distance to
the boundary is less than a given threshold value and 0
otherwise, where each basis has a different threshold. This
can then be interpreted as the controller receiving a set
of CSs. Once these signals enter the adaptive controller,
they are replicated n-times and passed through a series of
double-convolutional filters with different temporal profiles
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Fig. 2. The robot’s cognitive architecture is based on two coupled control
loop: a reactive and an adaptive one. The reactive controller inputs A,
which is induced by human tactile feedback (US) and/or by its anticipated
prediction from the adaptive controller, using contextual sensory cues
(CS). The learning signal of the adaptive controller is the error given by
US — knoiCR, see text for details.

(the details can be found in [14]) to generate a series of
diverse time-varying signals. We refer to these signals as
cortical bases. At time t, the vector p(t) contains the state
of these bases. The output of the adaptive controller, that by
analogy with the conditioning paradigm we refer to as CR is
equal to p(t)Tw(t), where w(t) are the regression weights.

The controller regresses its teaching signal e(t) to the
context at time ¢ —J. The regression weights w(t) are learned
on-line using the decorrelation learning rule [28]:

w(t) = —np(t — d)e(t)

where 7 is a sufficiently small learning rate. Finally, the
error signal is computed as follows

e(t) = US(t) — knos CR(t — 0)

This implies that the adaptive controller requires a degree
of feedback to confirm the correctness of the anticipatory
action, otherwise a negative error would be generated, pro-
portional to the k,,,; factor, resulting in the extinction of the
acquired behavior. In our setup, since the feedback is binary,
this will lead to a non-zero error rate at learning asymptote.
Note that the human reinforcement is compared not to the
current output of the controller but to a preceding one at time
t— 4, denoting that if an error occurs at time ¢ it should have
been prevented not by an action simultaneous to the error,
but by one anticipated by ¢ seconds. In short, this J sets the
extent of the anticipation.

IV. RESULTS

We instructed a human subject to grasp the robot’s upper
left arm every time the pencil crossed the boundary of the
shape, and release it after it entered back. For the first round
of experiments, the shape was always a square. The subject
was presented 10 times with the reactive controller and 10
with the adaptive controller on top of it.

Figure 3 shows a sample of both conditions. One can
observe an increase in both, the number of times the robot
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Fig. 4. The number of errors decreases with time in the adaptive controller,
but not in the reactive. This Figure shows the mean and standard error of
the feedback received for the ten executions of both the adaptive (blue) and
reactive (red) controllers.

received feedback and the amount of time spent on average
with every feedback for the reactive condition with respect
to the adaptive. Comparing Figures 3 B and D show how,
for a task that was only considering not going out of the
borders of the shape, the adaptive controller (D) keeps the
painting far form the borders, while the reactive (B) goes out
numerous times. Figure C shows how, after a few trials of
learning, the adaptive controller learns to produce an output
that anticipates human feedback, thus avoiding it most of the
times.

Furthermore, we defined a measure of the error as the
human feedback. As the human was instructed to provide
feedback to the robot whenever the pencil was painting
outside of the shape, we consider that the feedback (the US)
is a measure of the error perceived by the human. We use this
measure of error because, for this HRI task, where a human
is teaching a robot, the task can be considered successful as
soon as the teacher is satisfied with the performance. Figure
4 shows that this measure of error is noisy but constant for
the purely reactive controller, while it is reduced in the case
of the adaptive controller.

Finally, Figure 5 shows a single experiment, where after
a short period of training, the shape was changed from a
circle to a square. The Figure shows similar performance
for the different shapes, showing that the model allowed
the successful learning of an abstract concept, as is a drawn
border of a shape, from human teaching. To be more specific,
the learning mechanism has associated a previously neutral
stimulus (the border) to an aversive stimulus (the strong
grasp), what now is triggering an anticipatory behavior,
avoiding future punishment.

V. CONCLUSIONS

In this paper, we have proposed a biologically-grounded
cognitive architecture based on a reactive control of hand
movements from human feedback and an adaptive controller
based on the prediction of that feedback from contextual
sensory cues. The adaptive controller is based on an existing
model of the cerebellum which learns in an on-line manner to
predict an unconditioned stimuli US (the human feedback in
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our experiment) from a conditioned stimuli CS (the distance
between the pencil and the shape border).

The results show that the model is able to correctly antic-
ipate the human feedback, allowing to react before crossing
the shape border and to reduce or cancel the feedback.
Moreover, the model displays interesting generalization prop-
erties, where the behavior learned on painting a particular
shape can be successfully reused for painting other kind of
shapes. This is thanks to the contextual sensory cues that
are provided to the robot which are not shape-dependent but
rather based on the distance between the pencil tip and the

closest shape border. Altogether, these results support the
hypothesis that the cerebellum can play a role in a social
learning context when the learning is focused on the precise
timing of actions, and that neurocomputational models of
this brain structure can be successfully used in a human-
robot interaction context.

This model has a number of limitations that encourage
further extensions. First, the reactive controller is quite
simple, relying on only two predefined behaviors: exploring
randomly or going back toward the center for a variable
distance. We are considering to extend this reactive controller
to trigger more complex movement primitives related to
drawing movements or more elaborated exploration policies.
Second, we observe that the model is subject to forgetting
what it has learned before, which is a known issue but is
actually coherent with animal behavior data (a phenomenon
call “extinction” in the classical conditioning literature).
However, in a human-robot social learning context, as the
one proposed, it is an important issue that requires further
investigation. In the Distributed Adaptive Control framework
from which the current cognitive architecture is derived, a
contextual layer resides on top of the adaptive. This layer
allows the storage and retrieval of acquired behaviors in a
long-term memory, what could solve the forgetting.

Being the error nonspecific, in the sense that it only
signals the aversive state but it does not contain infor-
mation about how to correct it, one could argue that a
Reinforcement Learning (RL) paradigm would have been
more adequate; but we justify in the following why this
is not the case. Our problem here is to generate rapid
anticipatory well-timed responses, which is precisely the role
of a cerebellar like structure. The cerebellar model used [11]
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is a supervised learning system that in our case is driven
by a nonspecific error from human feedback. The trick is
that learning is anticipating the triggering of the reactive
behaviour in advance which in itself contains information on
the movement to make. Although the error is nonspecific,
the contextual information needed for the reflexive action
to generate the appropriate reflex directed to the center of
the shape is contained in the reactive layer. Our aim is to
model using a complete developmental scenario, how the
cerebellum is involved in adaptively modulating reflexive
behaviour. Moreover with the cerebellar architecture, we get
generalization to different execution speeds for free since the
first trials [14]. In the future we will consider of making the
human feedback more specific, by for example being able to
translate a tactile pattern, while holding the forearm of the
iCub, into a correcting direction.

In contrast, another argument against the task proposed
could be that the sensory cues are already complex and
specific to the task. In this sense, it must be remarked that the
purpose of this study is to provide a proof of concept showing
that neutral features of the environment can be identified as
relevant and used to accomplish a certain task, through the
anticipation of noisy, imprecise human feedback.

Our future work aims at enhancing the existing model and
introducing an extra non-specific learning phase grounded
on the interactions between the amygdala and the sensory
cortices. Such interactions allow the acquisition of relevant
features from a high dimensional sensory environment and
make them accessible to other areas of the brain, as detailed
in [29]. With this, the distance could be extracted and learned
from the relation between the pencil tip and the border of
the shape using vision and not given by the Reactable.

Finally, we note that the proposed model can be gener-
alized to any kind of task where an aversive stimuli can be
predicted consistently by contextual sensory information and
thus be used for robot learning. This advances in the direction
of preparing service or assistant robots for acting in complex
environments.
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